
Policy generalisation in reinforcement learning for
abstract argumentation

Sultan Alahmari1 and Tommy Yuan 2and Daniel Kudenko3

Abstract. Policy generalisation is an important attribute for an ar-
gumentative learning agent to apply the learned solutions to different
environments. Learning agent needs to know the specific argumenta-
tion patterns which can help to identify optimal argument in different
argumentation graphs. This paper demonstrates some difficulties in
identifying patterns for learning in abstract argumentation systems.
We propose to look into the internal structure of the arguments in
order to facilitate the identification of useful argument patterns.

1 Introduction
Argumentation is a type of communication between agents with the
purpose of reaching an agreement on what to believe [14]. There has
been increasing research in agent argumentation over the past decade
[18]. For an agent to be an effective dialogue participant, it needs
to have a set of dialogue strategies in order to make high quality
dialogue contributions. By reviewing the literature in computerised
dialogue systems, such as [19] and [16], it was noted that the dia-
logue strategies for most implemented systems are hardwired into
the agent [2]. However, given the dynamic nature of argumentation,
pne problem with the hardwired strategy is that because the heuristics
are fixed, it is not possible to refine or extend the dialogue strategy
especially when dealing with newly arising dialogue situations. One
way to address this is to make the agent search for the optimal strate-
gies based on each situation, for instance using trial and error, the
agent with the best strategy wins the dialogue [6].

Machine learning is believed to be able to meet this challenge [1]
since it is flexible for an agent to learn dialogue strategies through
past experiences. In addition, learning makes an agent easier to adapt
to not only a deterministic environment but also a stochastic environ-
ment [1]. A common approach for machine learning in an agent con-
text is reinforcement learning (RL) [10]. RL maps each state with an
action by interacting with the environment, the agent can then learn
what to do and how to connect a different situation with an action in
order to maximise the cumulative reward [10]. However, the agent
does not know which action to take initially so it needs to explore
all actions by randomly trying them out. Figure 1 illustrates how re-
inforcement learning works. Some work in the literature combines
reinforcement learning with dialogues, for instance [5]. Their focus,
however, is on negotiation as opposed to persuasive argumentation,
which is a different kind of dialogue [12]. Our chief interest is rein-
forcement learning for argumentation.

In [1] and [2], we present the ARGUMENTO+ system, named
after its predecessor ARGUMENTO as reported in [19]. ARGU-

1 University of York, UK, email: smsa500@york.ac.uk
2 University of York, UK, email: tommy.yuan@york.ac.uk
3 University of York, UK, email: daniel.kudenko@york.ac.uk

Figure 1. Reinforcement learning

MENTO+ allows an RL agent to play an argument game against dif-
ferent baseline agents. The result is promising when an agent learns
and plays in the same argumentation graph. It would be ideal if the
knowledge learned from one argument graph could be applied to a
different argument graph. This technique is called policy generalisa-
tion in the area of reinforcement learning. The key challenge here is
to identify state action patterns in abstract argumentation that can be
effectively applied to different argumentation graphs. [11].

The aim of this paper is to report our ongoing work in policy gen-
eralisation. The remainder of this paper is organised as follows. We
first introduce the work done so far, we then propose a generalisa-
tion approach and discuss the result. Finally, we discuss our intended
future work in this area.

2 Argumento+

We have built a reinforcement learning argumentation test-bed, AR-
GUMENTO+, using the Java programming language. An Abstract
Argumentation Framework [4] is used to represent the argumentation
process. The argument game presented in [13] was adapted for rea-
sons of simplicity and flexibility. The details of the argument game
are as follows:

The argument game can be represented as a tuple of: G=<A, D, R,
P> where: A is the argumentation system, D is the dialogue history
which contains a set of moves made by the players, R is the set of
rules that players need to follow when making a move, P is the set of
players, normally 2 denoted as 0, 1. In [13], Wooldridge defines six
rules that each participant must follow in a simple argument game
and they are:

1. First move in D is made by player0 e.g. P0 = 0



2. Players take turns making moves (one move per turn). Pi =
Pimod2.

3. Players cannot repeat a move ∀ai, aj ∈ D, ai 6= aj .
4. Each move must attack (defeat) the previous move ai → ai−1

5. The game is ended if no further moves are possible ∀ai ∈ A∧ /∈
D, aian

6. The winner of the game is the player that makes the final move
Gwinner

.
= Pnmod2

In ARGUMENTO+, the learning agent adopts the most commonly
used reinforcement learning method, the Q-Learning algorithm. The
formula for the Q-learning algorithm is: Q(St, At)← Q(St, At) +
α[Rt+1 + γmax

a
Q(St+1, At) − Q(St, At)] The aim of this algo-

rithm is to make an agent learn from experience and map each state
with an action by choosing the maximum value from the Q-table,
which is updated after each episode (episode is a number of repeated
game between players, each episode is one game). To enable Q-
learning, we need to identify state, action and reward function.

The state representation in the literature (e.g.[14];[3]) is adapted
where states are nodes in the argumentation graph and actions are the
attack relation between arguments. The aim of reinforcement learn-
ing is to allow the agent to learn how to act in the environment to
maximise the long term cumulative reward, and to explore the opti-
mal actions for each state to achieve the agents goal. It is supported
in [15] that learning will occur iteratively and through a trial-and-
error method, depending on the experience of interaction between
the agent and the environment and the reward it received.

In this research, the reward for the agent is designed as the num-
ber of acceptable arguments in the grounded extension. The reason
for the adoption is that the grounded extension contains a set of ac-
ceptable argument that have been put forward by the dialogue partici-
pants, and each individual agent wishes to maximise the acceptability
of their own arguments in each episode [1].

After performing an initial experiment to investigate whether the
learning agent can learn to argue against the baseline agents [1];
[2], we found that it was generally encouraging to apply reinforce-
ment learning to argumentation. However, we discovered issues with
state representation, where a state is defined as the argument itself
in the argumentation graph. An argument sometimes appears in dif-
ferent dispute lines and therefore cannot represent a unique dialogue
state. As a result of the confusion over state representation, a learn-
ing agent picking an argument with a high value may sometimes lose
the game. This issue has an negative impact on the agent’s perfor-
mance. To tackle this issue, we proposed and experimented with a
more sophisticated state representation, that is (levelOfTree, agen-
tID, currentState, previousState). The results are promising and it can
clearly be seen that the learning agents perform better against differ-
ent baseline agents as demonstrated in Figure 2, 3 and 4 where the
performance of the learning agent is in green and the baseline agent
in blue.

The agent so far learns and performs in the same argumentation
graph. When facing a new argument graph, the agent has to learn
from scratch. It would be ideal if the learning agent could transfer
what has been learned in one graph to a different argument graph.
This relates to RL policy generalisation which will be discussed next.

3 Policy generalisation for abstract argumentation

Policy generalisation intends to generalise the policy that have been
learned by a RL agent. As a result, a leaned policy that has been
learned from one argument graph should be able to applied to a dif-

Figure 2. RL agent against Max-Probability agent

Figure 3. RL agent against Min-Probability agent

ferent argument graph. One solution is to identify possible argument
patterns (e.g. state-action pairs) that can be effectively applied across
a range of different argument graphs.

Since we are dealing with abstract argumentation system where
only the arguments and the attacking relations are known, this leads
us to looking into the attacking relations between the arguments
which might form useful features for argument representation. We
propose to take the feature of the number of attackers and the num-
ber of immediately winning attackers for use to represent an argu-
ment action. As an example shown in Figure 5, argument C, D has
zero attackers, argument B has one immediately winning attacker and
argument a has two attackers and one immediately winning attacker.

Number of attackers provides the number of possibilities that an
argument can be attacked. Number of immediately winning attackers
provides the number of immediately successful attackers. A further
feature (currently named as category) can be derived by using the
formula of (number of immediately winning attackers)/(number of
attackers). This number provides a short term view on the proportion
of the winning attackers. The value for category ranges from 0 to 1, it
can therefore be further classified into different intervals {0, (0,0.25],
(0.25,0.5), 0.5, (0.5,0.75], (0.75,1), 1}. The smaller the number is,
the argument is likely win from a short term of view. As a result, the
categories might be qualified as definite win, high likely win, likely



Figure 4. RL agent against Random agent

Figure 5. Argumentation graph

win, maybe win, unlikely win, high unlikely win, definitely lose from
a short term view.

Number of attackers and category have been applied in represent-
ing argument actions and implemented in ARGUMENTO+. To make
the state representation unique for the current game, we use the fol-
lowing state representation: (depthOfTree, Argument, Category, Nu-
mOfAttackers). Two Q-tables have been maintained: one for the cur-
rent argument game and the other is general that can be used by other
argumentation graphs. After finishing each argument game we trans-
fer the values to the general Q-table which contains only (Category,
NumOfAttackers). However, if two arguments in the current game
have the same category and number of attackers it will take an aver-
age of these two values then transfer that to the general Q-table.

In order to evaluate whether the generalisation method works, we
needed to identify a data set in order to test the agent’s performance.
Initially, we tested three different graphs and found that the policy
converged in episode 50 in all three, but there was a problem be-
cause the performance was not stable. We suspect that a big data set
is needed in order to achieve the stability. Therefore, we randomly
generated 50 different graphs, they are fully connected with a num-
ber of nodes between 5 to 10. To ensure a uniform choice, we chose
Leave One Out Cross Validation in 50 graphs, and take an average at
the end.

We ran the experiment over 50 games with each game having 50
graphs. The agent was trained on 49 graphs and then tested with
the 50th graph. We decided to encourage our learning agent to take

two different approaches based on the number of arguments in the
grounded extension. We examined whether the RL agent was inter-
ested in winning the game with the minimum or maximum number
of arguments. Indeed the reward shaping needs to be modified, as in
the flowchart in Figure 6. The experiment also envisages to have one
agent with knowledge and one without. After 50 games, an average
of the rewards after every 5 episodes was taken as shown in Figures 7
and 8.

Figure 6. Reward shaping

Figure 7. Cross validation for RL agent with and without knowledge with
minimum numbers of arguments

In the first few episodes of both cases, the learning agent (in red
line) demonstrates some advantage of the learnt knowledge but soon
the advantage was overtaken by the agent learning from scratch (in
blue line) most of the time. This is an unexpected result though the
usefulness of the learned knowledge is merely demonstrated at the



Figure 8. Cross validation for RL agent with and without knowledge with
maximum numbers of arguments

start. By comparing both cases in Figures 7 and 8, the learning per-
forms better when trying to win with minimal number of arguments.
By inspecting the Q-tables, the only consistent finding is that the ar-
guments with zero number attackers attract highest value in the win-
ning with minimal number of argument scenario. On reflection of the
experimental result, the argumentation graph in Figure 9 is used an
an example to facilitate the analysis. A uniformed distribution is as-
sumed where the winning possibility of an argument is 50/50 For ex-
ample,the current state for the learning agent is argument ‘A’ and the
agent needs to decide which argument to choose from ‘B’ or ‘C’ or
’X’. In our proposal, the agent can see the next level of the tree argu-
ments ‘D’, ‘E’ and ‘F’ respectively. Therefore the chance of winning
for argument ’B’, ’C’, ’X’ are 0.25, 0.5 and 1 respectively.

Figure 9. Argumentation graph with possibility of winning

We would normally expect the argument with a lower number of
attackers to do better. This is the case for argument ’X’ (with value
1) in a winning with the minimum number of arguments scenario.
However when the learning agent is looking to maximise the num-
ber of grounded extensions, ’C’ (with value 0.5) is the best choice.
A further example can be seen from the argumentation graph in Fig-
ure 10. Although argument ’Q’(with value 0.5) has higher winning
possibility value than ’R’ (with value 0.125), the learning agent will
choose R (with a lower value) because it is higher long term reward.
We believe that this is the main reason why the learning agent cannot

identify useful patterns to generalise the policy for different graphs.

Figure 10. Different scenario of argumentation graph

4 Conclusions and Future work

We have designed an RL agent for abstract argumentation and the
agent performed well in a single argument graph. We also reached
the conclusion that in abstract argumentation it is hard to capture
useful argument patterns that can be reused in different argument
graphs. It might be sensible to move from the abstract argumentation
to proposition-based argumentation where the internal structure of an
argument is considered.

There are many dialogue games in the area of informal logic and
computational dialectics that are operated at the propositional level
(e.g. [12]; [8]; [17]). Informal logic dialogue games possess rich fea-
tures in dialogue states and ample room for strategic formation where
various argument patterns can be identified.

The first step of investigation could be to study the representation
of goal, state, actions and reward functions for such dialogue so that
reinforcement learning can effectively take place. For a persuasive di-
alogue the dialogue goal can be specified as converting each others’
view point. Dialogue history, commitment stores and agent knowl-
edge base contribute to the formulation of the dialogue state which
should provide sufficient information for an agent to make decision
for an action.

Reward functions for dialogue games are complicated to design.
Ground extensions, which we have been used successfully in ab-
stract argument games, can be applied here, with extra facilities to
transform the pool of proposition-based commitments to abstract ar-
gument systems. ASPIC+ by Prakken and Modgil [7] and its im-
plementation - TOAST [9] by Reed and Snaith will be useful here.
Further reward functions can also be explored in order to capture the
naturalness of a dialogue e.g. argument flows. Upon the successful
learning of a single argumentation topic, the learned policies can be
tested on a different topic or even a different game to see whether it
is general.

ACKNOWLEDGEMENTS

We would like to thank the referees for their comments which helped
improve this paper.



REFERENCES
[1] Sultan Alahmari, Tommy Yuan, and Daniel Kudenko, ‘Reinforcement

learning for abstract argumentation: Q-learning approach’, in Adaptive
and Learning Agents workshop (at AAMAS 2017), (2017).

[2] Sultan Alahmari, Tommy Yuan, and Daniel Kudenko, ‘Reinforcement
learning for argumentation: Describing a phd research’, in Proceedings
of the 17th Workshop on Computational Models of Natural Argument
(CMNA17), (2017).

[3] Heriberto Cuayáhuitl, Simon Keizer, and Oliver Lemon, ‘Strategic di-
alogue management via deep reinforcement learning’, arXiv preprint
arXiv:1511.08099, (2015).

[4] Phan Minh Dung, ‘On the acceptability of arguments and its fundamen-
tal role in nonmonotonic reasoning, logic programming and n-person
games’, Artificial intelligence, 77(2), 321–357, (1995).

[5] Takuya Hiraoka, Kallirroi Georgila, Elnaz Nouri, David Traum, and
Satoshi Nakamura, ‘Reinforcement learning in multi-party trading dia-
log’, in 16th Annual Meeting of the Special Interest Group on Discourse
and Dialogue, p. 32, (2015).

[6] Piotr S Kośmicki, ‘A platform for the evaluation of automated argu-
mentation strategies’, in International Conference on Rough Sets and
Current Trends in Computing, pp. 494–503. Springer, (2010).

[7] Sanjay Modgil and Henry Prakken, ‘The aspic+ framework for struc-
tured argumentation: a tutorial’, Argument & Computation, 5(1), 31–
62, (2014).

[8] Henry Prakken, ‘Formal systems for persuasion dialogue’, The knowl-
edge engineering review, 21(2), 163–188, (2006).

[9] Mark Snaith and Chris Reed, ‘Toast: Online aspic+ implementation.’,
COMMA, 245, 509–510, (2012).

[10] Richard S Sutton and Andrew G Barto, Reinforcement learning: An
introduction, volume 1, MIT press Cambridge, 1998.

[11] Matthew E Taylor and Peter Stone, ‘Transfer learning for reinforcement
learning domains: A survey’, Journal of Machine Learning Research,
10(Jul), 1633–1685, (2009).

[12] Douglas Walton and Erik CW Krabbe. Commitment in dialogue, 1995.
[13] Michael Wooldridge, An introduction to multiagent systems, John Wi-

ley & Sons, 2002.
[14] Michael Wooldridge, An introduction to multiagent systems, John Wi-

ley & Sons, 2009.
[15] Erfu Yang and Dongbing Gu, ‘Multiagent reinforcement learning for

multi-robot systems: A survey’, Technical report, tech. rep, (2004).
[16] Tangming Yuan, David Moore, and Alec Grierson, ‘A human-computer

dialogue system for educational debate: A computational dialectics ap-
proach’, International Journal of Artificial Intelligence in Education,
18(1), 3–26, (2008).

[17] Tangming Yuan, David Moore, Chris Reed, Andrew Ravenscroft,
and Nicolas Maudet, ‘Informal logic dialogue games in human–
computer dialogue’, The Knowledge Engineering Review, 26(2), 159–
174, (2011).

[18] Tangming Yuan, Jenny Schulze, Joseph Devereux, and Chris Reed, ‘To-
wards an arguing agents competition: Building on argumento’, in Pro-
ceedings of IJCAI2008 Workshop on Computational Models of Natural
Argument, (2008).

[19] Tangming Yuan, Viar Svansson, David Moore, and Alec Grierson, ‘A
computer game for abstract argumentation’, in Proceedings of the 7th
Workshop on Computational Models of Natural Argument (CMNA07),
(2007).


